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Alex Angermeier

• Education
− B.S. in Physics and Applied 

Mathematics
− Pursuing PhD in Physics

• Research Interests
− Computational simulations of warm 

dense matter
− Development of wave packet molecular 

dynamics methods
− Z-pinch and other pulsed power 

experiments
• Personal Interests
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− learning Punjabi
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Ioana Dumitru
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● B.S in Mechanical Engineering

Research Interest include:

● Using simulations to understand events that impact 
the environment (energy/water systems, wildfires, 
etc.)

● Inverse Modeling

Personal Interests

● Tropical plants
● Working on cars
● Camping
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General Inertial Confinement Fusion (ICF) Implosions

S. Craxton et al. Physics of Plasmas 22, 110501 (2015)
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Hydrodynamic Instabilities

S. Craxton et al. Physics of Plasmas 22, 110501 (2015)

Rayleigh-Taylor
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Hydrodynamic Instabilities are Stabilized using Viscosity

Plot showing how viscosity dampens the growth rate.

Viscous Stabilization

Viscosity represents the internal 
resistance of a fluid to motion. 
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Two-Pronged Approach to Understand Viscosity in 
Plasmas
Alex: micro scale approach
Molecular Dynamics Simulation (LAMMPS):

● Develop and validate a two component plasma input deck. 
● Calculate the viscosity for CH mixtures at different thermodynamic conditions.  

Ioana: macro scale approach
Radiation Hydrodynamics Simulation (xRage):

● Fuel target design 
● Empirical calculations of viscosity
● Large sweep of physical parameter space for ICF Implosion.
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Methods and Results - 
Molecular Dynamics (MD) with 
LAMMPS
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OCP: Electrons are treated as a uniform neutralizing, non-polarizable 
background, and there is one mobile ion species. 

• Ions interact through the Coulomb potential. 

• Characterized through Coulomb coupling parameter:

• 𝛤 > 1 : plasma is strongly coupled

• 𝛤 < 1 : plasma is weakly coupled (classical plasma physics regime)

One Component Plasma (OCP) 
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Two Component Plasma (TCP)

● Treat TCP in a similar manner as the OCP
− Single coupling parameter, plasma frequency, ion sphere radius 

➢ Estimated Coulomb coupling for TCP [1]

➢ Aggregate plasma frequency [1]

● Average values for the two ion species:                                   , P represents a physical ion quantity [1].   

TCP: Similar to OCP, except there are two mobile ions in the plasma. 

1. J. P. Hansen, G. M. Torrie, and P. Vieillefosse, Physical Review A 16, 2153 (1977). 
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Transport coefficients and Green-Kubo (GK) relation
• Relates thermodynamic fluxes and forces

− flux (transport phenomena) = rate of flow of a property (i.e. mass, 
energy, momentum) per unit area [1]

− Viscosity (𝜂) relates the momentum flux to the velocity gradient.

• GK relations connect equilibrium fluctuations of fluxes to transport 
coefficients[2]. 
Shear viscosity [2,3]:

○                     = shear stress autocorrelation function

○ V is the volume of the system

1. B. R. Bird, E. N. Lightfoot, and W. E. Stewart, Transport Phenomena (Wiley, New York , NY, 2007).
2. M.S. Green, The Journal of Chemical Physics 22, 398 (1954). 
3. J. Daligault, K. Ø. Rasmussen, and S. D. Baalrud, Physical Review E 90, (2014).
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Molecular Dynamics Methods
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Using MD to extract viscosity

• Equilibrate TCP system.

• Run the TCP simulation. 

• Output shear stress (𝜎𝛼𝛽) in time 
intervals.
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Using MD to extract viscosity 

Plot of Autocorrelation Plot of Cumulative Integral 



  15

● Compare with well developed OCP deck

○ use the same ion for both ions in 
TCP deck

■ Compare equilibrium 
thermodynamics

■ Compare radial distribution 
functions (rdf)

● Use the impurity limit

○ limit the amount of one type of 
species to zero and compare with 
OCP 

● Test for simulation convergence. 

LAMMPS TCP input deck verification and validation
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Molecular Dynamics Results
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Results

♦ cross-potential viscosity shown is the absolute value as the cross-potential viscosity is actually negative 
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Methods and Results - 
Radiation Hydrodynamics with 
xRAGE
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Characterizing ICF Implosions

Choose Inputs:

● Laser Inputs:
● Laser pulse shapes

● Target Design
● Carbon
● Beryllium
● Aluminum
● Chromium

Note: All ablators were mass matched.

Run Model:

xRAGE:
● An Eulerian 

radiation-hydrodynamics code 
with adaptive mesh refinement 
(AMR). 

Air

DT Gas

Ablator
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Square Wave 1-Picket 3-Picket 

Laser Shapes Used

● Total energy for all laser shapes are the same
● Will continue discussion with square wave laser due to small variation in results.
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Two Viscosity Models for Different Plasma Regimes

Viscosity for Γ > 10:

Viscosity for Γ < 10:

J. Daligault et al. Physical Review E90, 033105 (2014)

S. Bergeson et al. Physics of Plasmas 26 100501 (2019)
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Kinematic Viscosity along Material Interface for Square 
Wave Laser

Kinematic Viscosity: ν = η* a2 ωp

Be
C

Al
Cr

Be

C

Al
Cr

Be
C

Al
Cr
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Instability Growth Rate for Square Wave Pulse

Amplitude of Instability

Instability Growth Rate

ν = kinematic viscosity
A = density ratio of DT Gas to Ablator
k = wave number 
   = acceleration at material interface

Cutoff point
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Instability Growth Rate for Square Wave Pulse in DT Gas

1.5 ns

ν 
Shell
cm^2/s

ν 
Gas
cm^2/s

A R
um

cm/s^2

Z
Shell

C 1.718 28.17 0.282 1040 -4.407 3.85

Be 3.842 40.59 0.355 1020 -0.093 2.63

Al 0.456 28.48 0.275 1015 -2.563 6.96

Cr 0.124 3.28 0.296 1098 -4.602 12.83
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Instability Growth Rate for Square Wave Pulse in DT Gas

1.8 ns

ν 
Shell
cm^2/s

ν 
Gas

cm^2/s

A R
um

cm/s^2

Z
Shell

C 2.88 36.38 0.246 789 -5.191 3.66

Be 94.26 253.6 0.074 699 -2.636 2.195

Al 0.287 25.59 0.329 870 -3.960 7.922

Cr 0.144 6.40 0.295 980 -7.324 11.37



  26

Conclusions

One-Component Materials
● Adding pickets to the pulse shape did not affect the viscosity substantially.
● While Be seems to be most effective in dampening instabilities while Cr is 

the least effective.

MD-Simulation of TCP
● LAMMPS TCP input deck was successfully verified against OCP simulation.
● Successfully calculated the viscosity of a CH TCP for a range of 𝛤 values.
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Future Work

● Submitted Abstracts to the Division of Plasma Physics (DPP) Annual 
Meeting and will present work there

● Continue working with Brett Scheiner on two-component plasmas.


